主 题: Partitions related to mock theta functions(与拟theta函数相关的分拆)
讲座人简介:
王六权,武汉大学数学与统计学院特聘副研究员。本科,浙江大学数学系; 博士,新加坡国立大学。研究领域主要为数论,分拆理论、q级数及模形式的应用。他目前已发表和接收SCI文章18篇。近年来担任多个SCI学术期刊的匿名审稿人。 2017年获得新加坡国立大学理学院研究生最佳研究奖。
讲座内容:
Let $\omega(q)$ be the third order mock theta function due to Ramanujan and Watson. In his 2007 paper in Invent. Math., Andrews interpreted the coefficients of $\omega(q)$ as a partition function $p_{\omega}(n)$. He also introduced the concepts of odd rank and k-marked odd Durfee symbols for this kind of partitions. In this talk, we will present some new congruences satisfied by $p_{\omega}(n)$ and the smallest parts function associated to it. Meanwhile, we will discuss the arithmetic properties of odd ranks and k-marked odd Durfee symbols. Applying the properties we find, we give proofs to Andrews’ conjectures on the parity of k-marked odd Durfee symbols.
时 间: 2018年4月23日(周一)15:00-16:00
地 点:品C406
主 办: 科学技术学院